Thin boron nitride nanotubes with exceptionally high strength and toughness.

نویسندگان

  • Yang Huang
  • Jing Lin
  • Jin Zou
  • Ming-Sheng Wang
  • Konstantin Faerstein
  • Chengchun Tang
  • Yoshio Bando
  • Dmitri Golberg
چکیده

Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic "hollow" ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ∼1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 10(6) J m(-3). Such nanotubes are thus very promising for strengthening and toughening of structural ceramics and may find potential applications as effective energy-absorbing materials like armor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boron Nitride Nanotube: Synthesis and Applications

Scientists have predicted that carbon’s immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990’s, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free m...

متن کامل

Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the ten...

متن کامل

Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites

Ceramics have superior hardness, strength and corrosion resistance, but are also associated with poor toughness. Here, we propose the boron nitride nanoplatelet (BNNP) as a novel toughening reinforcement component to ceramics with outstanding mechanical properties and high-temperature stability. We used a planetary ball-milling process to exfoliate BNNPs in a scalable manner and functionalizes ...

متن کامل

Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmos...

متن کامل

Mechanism for Low Temperature Growth of Boron Nitride Nanotubes

Selective growth of boron nitride nanotubes (BNNTs) was demonstrated by plasma-enhanced pulsed laser deposition (PE-PLD). Although PLD is a physical vapor deposition technique for the growth of boron nitride (BN) thin films, ion sputtering induced by the plasma can eliminate the formation of BN thin films and lead to the so-called total resputtering region, in which, a pure phase of BNNTs can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2013